
Math 4200-001
Wednesday September 2:  Finish 1.3; begin 1.5, complex differentiability

Announcements
Today we will add to the discussion of section 1.3, using Monday's notes.  There is 
more to say about exponentials and logarithms and the complex "trig" functions. Then 
we will proceed into today's notes.

Notice that we're skipping section 1.4.  This section is a review of some of the analysis 
you've learned in Math 3210-3220 in the context of the complex plane.  Since the 
complex plane  is isometric to 2 ,  I'm choosing to not formally cover section 1.4.  
Rather, we will use the definitions and theorems as we need them in 1.5 and going 
forward, and we will remind each other of how they correspond to - or actually exactly 
are -  definitions and theorems from 3210-3220.   We'll refer back to section 1.4 as 
needed. This is a change from how I taught the class last fall, and I think it will be more
efficient and improve the flow.  We'll see.  :-) 

Quiz 2 today, at the end of class, related to section 1.3 material.

Warm-up exercise

   



Def   Let f : A  where A  is open.  Let z0 A .   We say that f  is (complex) 
differentiable at z0  iff

limz z
0

f z f z0
z z0

f z0

exists.  Note: an equivalent way to express the limit above is as

lim
h 0

f z0 h f z0
h .

Example 1:   Using z w  for the Euclidean distance between z, w , write down 
the precise statement of each analysis concept in the definition above for f  being 
complex differentiable at z0 .

Def  Let f : A  where A  is open.  If f  is complex differentiable for all z A  
then we say that f  is (complex) analytic  or holomorphic on A .



Remark:  So that you don't get complacent, here is some magic we'll be seeing within a 
few weeks:

(i)  If f  is analytic on A  as on the previous page, then the derivative function f  is too! 
And f f is too.  And in fact, f  has nthorder derivatives of every order n on A  
as soon as its first derivative exists on all of A . Automatically!  (Nothing like this was 
true in general for differentiable functions in regular Calculus!  For example there are 
lots of differentiable functions that are not infinitely differentiable.)

(ii)  If  f  is analytic on all of ℂ and if f  is also a bounded function, then actually f  
must be a constant.  (This is called Liouville's Theorem.)  In fact, if f  is analytic on all 
of  and if f  grows no faster than a polynomial  ( f z  C z n  for z M  some 
M), then actually f z  is a polynomial of degree at most n !!  There are lots more 
analytic functions than just polynomials, but even if they're analytic on all of  they 
behave much more wildly than polynomials as z .

(iii)  If f, g are both analytic on an  open connected set A  and if zn n N A  is a 
sequence of distinct complex numbers, with zn z0 A ;  and if 
f zn = g zn , n , then actually f z = g z   z A   !!!   

Example 2  What are the two equivalent definitions of connected set , in the case that the
set A  is also open?

(iv)  If f, g are both analytic on and open connected set A  and if the function values and
all derivatives of f  and g agree at z0  then actually f z = g z  for all z A .



Until we get to the magic, let's proceed as we did in Calculus.   As we do this we'll be 
recalling facts and limit theorems/estimates from 3210-3220.

Theorem  Let f  be complex differentiable at z0 A , A  open.  Then f  is
continuous at z0 .

Theorem  Let  A  open, f, g : A  analytic, c . Then c f,  f g, f g  are 

analytic on A .  And the quotient f
g  is analytic in A  intersect the complement of the 

zero set for g.  Furthermore, for z A ,

(i)  c f z = c f z

(ii)  f g z  = f z g z

(iii)   f g z = f z g z   f z g z

(iv)   f
g z = f z g z f z g z

g z 2   where g z 0.

The proofs are just like in Calc 1.  We can verify the product rule or the quotient rule, 
for example:



Some more computations that go just like in  Calculus:

(i)  if f z  is the constant function, its derivative is zero.

(ii) if f z = zn, n , then f z = n zn 1

(iii)  if f z = zn, n , then f z = n z n 1

(iv)  every polynomial in z is analytic on ℂ, with the expected formula for its derivative.

(iv)  if f z = p z
q z  is a rational function, i.e. a quotient of two polynomials, then 

f z  is analytic on the complement of the zero set for q.

The chain rule is also true - we'll prove this on Friday or next week, along with a 
discussion of the inverse function theorem.  (The chain rule proof proceeds just like the 
precise proof for the 1-variable real chain rule that you discussed in 3210).  In any case, 
if f  is differentiable at z0  and g is differentiable at f z0  then g f  is differentiable at 
z0 , and

g f z0 = g f z0 f z0 .



Example 3:  Write z = x i y, y .   Then f z = Re z = x is NOT complex 
differentiable at any point of  !   (Even though the associated F : 2 2  given by 

F x, y  = Re f, Im f = x, 0
is Math 3220-differentiable, with differential (Jacobian) matrix

dF x, y =
1 0

0 0
!!!

The way to check Example 3 at any point z0 = x0  i y0  is to evaluate the limits

limz z0

f z f z0
z z0

z z0  from the real and imaginary directions and see that these limits do not agree.



In fact, being complex differentiable is very rare for a function f : A , 
relatively speaking, even when Re f  and Im f  are nice real-differentiable functions 
of x and y

Theorem    Let A  open, f : A , z0 A .  Write 
f z = f x  i y = u x, y  i v x, y ,   where u x, y = Re f x i y , v x, y = Im

f x i y .  Then if f is complex differentiable at z0 = x0  i y0  the following 
partial derivative equalities - known as the Cauchy-Riemann equations -  must hold 
there:

ux x0, y0 = vy x0, y0
uy x0, y0 = vx x0, y0 .

(The converse statement is almost true.  The precise fact, which we'll discuss on Friday, 
is that if F : A 2 2 , F x, y = u x, y , v x, y  is Real differentiable at 

x0, y0  as you discussed in Math 3220, and if the CR equations hold at x0, y0 , then
f x i y = u x, y i v x, y  is complex differentiable at z0 = x0  i y0 .   This is 
Theorem 1.5.8 in the text, which calls it the "Cauchy-Riemann Theorem".  
Geometrically, the CR Equations are saying that the differential map of F  is given by a 
rotation-dilation matrix.)

proof:


